The Crystal Structure of WAl₁₂, MoAl₁₂ and (Mn, Cr)Al₁₂

BY J. ADAM AND J. B. RICH

Atomic Energy Research Establishment, Harwell, Didcot, Berks., England

(Received 15 April 1954 and in revised form 24 August 1954)

The crystal structure of WAl_{12} has been determined from powder samples. The unit cell is bodycentred cubic and a = 7.580 Å. There are two WAl₁₂ units per cell. The space group is T_b^5-Im3 . Two W atoms are placed in special positions 0, 0, 0, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ and 24 Al atoms are in positions 24(g) with y = 0.184 and z = 0.309. The calculated density is 3.88 g.cm.⁻³.

 $MoAl_{12}$ and $(Mn, Cr)Al_{12}$ (the G phase) are isomorphous with WAl_{12} . a = 7.573 Å for $MoAl_{12}$ and a = 7.507 Å for (Mn, Cr)Al₁₂.

Introduction

The tungsten-aluminium system was investigated by Clark (1940), who found among others an intermetallic compound of approximate composition WAl₁₂. The crystal structure of this compound was, however, not worked out.

Our own preliminary work on a series of alloys indicated that the structure was of a new type. It also soon became apparent that a diffraction pattern obtained by Little & Hume-Rothery (1948) from a ternary compound Mn–Cr–Al (the G phase) showed resemblance to the diffraction pattern of WAl₁₂.

Alloys of aluminium with molybdenum of composition MoAl₁₂ were also examined.

Experimental details

Samples of tungsten-aluminium and molybdenumaluminium alloys were prepared by powder methods. All samples contained a small amount of the α (aluminium) or δ (probable composition W_2Al_9)* phases. For this reason neither accurate density measurements nor chemical analysis could be undertaken.

Dr K. Little kindly lent to the authors the original samples of the G-phase alloys and also prepared by melting an alloy from which minute WAl₁₂ crystals and plates of the δ phase were isolated. Separation of these two components was attempted on a small scale in a Frantz isodynamic separator with some success, but complete separation was not achieved.

X-ray photographs were taken in a precision 19 cm. powder camera (Adam, 1954). Filtered copper radiation $(\lambda K \alpha_1 = 1.54050 \text{ Å})$ was used for the study of the tungsten and molybdenum alloys. Photographs of the Mn-Cr-Al alloys were taken with copper, iron and chromium radiations. Films thus obtained were measured with high precision using a new film-measuring device based on the luminous marker line principle by Lees (1952). It is claimed that these measurements

are more accurate than the results published by Little & Hume-Rothery (1948).

Integrated intensity measurements were made in a standard manner using the Hilger recording microphotometer. An intensity calibration strip was exposed on each film.

In the first instance an approximate absorption factor was applied, and calculated and measured intensities of neighbouring lines only were compared in groups. An attempt was subsequently made to obtain an overall check of intensities. Various absorption factors were tried and values of $\log (I_o/I_c)$ were plotted against $(\sin \theta / \lambda)^2$. A very satisfactory straightline plot was obtained for a composite absorption factor

$$A = \alpha \tau$$

where α is the absorption factor depending on μR ; τ is the micro-absorption factor (Taylor, 1945) or

the particle-absorption factor (Brindley, 1945; see also de Wolff, 1951), depending on $(\mu_p - \mu)a$ tabulated by Taylor;

 μ is the mean absorption coefficient of the powder; μ_p is the absorption coefficient of the particle; *R* is the radius of specimen;

and a is the radius of the particle.

A scale factor and temperature correction were obtained from the plot of log (I_o/I_c) against $(\sin \theta/\lambda)^2$.

The crystal structure of WAl₁₂

All the powder lines obtained from this alloy were indexed on the basis of a body-centred cubic lattice. The size of the unit cell obtained from the best photographs of the magnetically separated crystals was

$$a = 7.5803 \pm 0.0005$$
 Å

at room temperature. Samples prepared by powder methods, however, have usually smaller unit cells; in one case a value as low as a = 7.568(5) Å was found. A certain amount of line broadening was observed in this case.

^{*} Note added in proof.—Recent work by the authors suggests that WAl₅ is a more probable composition of the δ phase.

Fig. 1. The crystal structure of WAl₁₂.

Since neither accurate chemical analysis nor density measurements could be made on existing samples, the formula was deduced from the consideration of atomic volumes. Assuming that the atomic volumes of the constituents are not altered drastically by alloying, the most probable formula is WAl_{12} .

The only systematic absences observed were those characteristic of a body-centred cubic lattice. Packing considerations lead to the conclusion that the available space can be well filled if formula WAl₁₂ and space group T_h^5 -Im3 are accepted. Each of the two tungsten atoms placed in special positions 0, 0, 0, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ would then be surrounded by twelve aluminium atoms in 24(g) 0, y, z, etc. (see Fig. 1). The calculated density of the alloy is 3.88 g.cm.⁻³.

Algebraic expressions giving distances between various atoms in terms of y and z can be easily derived for the proposed structure, and a few guesses of probable values of y and z can be made by assuming equality of certain interatomic distances. Intensity calculations were made for six sets of likely values for y and z and were compared with measurements. Very good agreement between calculated and measured intensities was found (Table 1) for y = 0.184, z = 0.309. These parameters were obtained by assuming the distance Al(1)-Al(2) to be equal to Al(1)-Al(9') and the distance Al(1)-Al(3) to be equal to Al(1)-Al(6'') (atoms numbered as in Fig. 1).

To test the structure the conventional reliability

Table	1.	Compari	ison of	` calculat	ed and	observed
	in	tensities	for the	WAl	structur	·e

		$N = h^{2}$	$k^2 + k^2 + l^2$		
\boldsymbol{N}	Ic	I_o	\boldsymbol{N}	Ic	I_o
2	864	769	48	14	20
4	126	133	50	263	248
6	433	435	52	84	85
8	42	48	54	124	121
10	596	586	56	43	56
12	282	287	58	34	38
14	703	675	62	111	113
16	103	100	64	2	
18	146	148	66	156	167
20	45	53	68	55	53
22	34	38	70	227	224
24	167	159	72	272	250
26	316	323	74	332	333
30	102	93	76	29	25
32	35	42	78	167	172
34	228	226	80	16	Trace
36	146	140	82	98	95
38	358	371	84	254	245
40	27	41	86	420	402
42	75	87	88	133	129
44	25	38	90	503	571
46	164	168	94	575	511

Table 2. The d values and indices for the G phase

	T *//1 & TT	D (1	N =	$h^2 + k^2 + l^2$					
	Little & Hum (1948	e-Rother)*	У	Present authors					
Line	d (Å)	N	<i>d</i> (Å)	N	I	Measurement	a (Å)		
1	5.135	6	5.2639	2	8	Good	7.4443		
2	3.007	18†	3.0499	6	m-	Good	7.4707		
3	2.623	25	$2 \cdot 6429$	8	m-	Fair	7.4752		
4	_	—	2.608(7)	—	vvw	Doubtful			
5	2.333	32	2.3661	10	vs	Good	7.4824		
6	_	—	$2 \cdot 343(9)$		vvw	$\mathbf{Doubtful}$			
7	2.297	33	$2 \cdot 3296$	Al	w	Good	_		
8	2.247	34	$2 \cdot 226(2)$		vvw	Doubtful			
9	2.194	36	$2 \cdot 1612$	12	vs	Good	7.4866		
10	2.135	38	2.121(8)		vvw	Doubtful			
11	2.093	40	2.0743		vw	Fair			
12	2.065	41	2.0491	_	vw	Fair			
13	1.978	45	2.0021	14 + Al	vs	Good	7.4912		
14	1.854	51	1.8715	16	m	Good	7.4860		
15	1.754	57	1.7652	18	m	Good	7.4890		
16	1.590	69			‡	—	_		
17	_		1.6750	20	<i>w</i> –	Fair	7.4910		
18	1.519	76	1.5293	24	m	Good	7.4921		
19	1.203	77	1.4697	26	m	Fair	7.4941		
20	1.411	88	1.427(8)	Al	vw	$\mathbf{Doubtful}$			
21	1.364	94	Poor resolu	ition		Doubtful			
22	1.279	107	1.2856	34	vs	Fair	7.4964		
23	1.260	110	1.2493	36	8	Good	7.4960		
24	1.217	118	_	_	‡				
25	1.213	120	1.2162	38	vs	Good	7.4973		
26	0.896	219	0.89690	70	8	Good	7.5040		
27	0.871	232	0.87232	74	8	Good	7.5040		
28	0.818	262	0.81884	84	m	Good	7.5048		
29	0.791	281	0.79130	90	8	Good	7.5069		

* The *d* values are converted to Ångström units.

† In the original paper this value is given in error as 24.

‡ Not observed.

factor was worked out for calculated and observed intensities. The value obtained, R = 0.06, can be considered very satisfactory. The errors in y and z are probably less than ± 0.001 .

Crystal structure of MoAl₁₂

Samples of this alloy gave diffraction patterns practically indistinguishable from WAl_{12} . The unit-cell dimension measured from photographs of alloys prepared by powder methods was found to be

a = 7.573 Å.

Intensity measurements were not attempted. Visual estimates agreed well with calculations based on the same parameters as WAl_{12} and it is concluded, therefore, that the structure of $MoAl_{12}$ is essentially the same as WAl_{12} . The calculated density of $MoAl_{12}$ is 3.22 g.cm.⁻³.

Crystal structure of (Mn,Cr)Al₁₂ alloy (the G phase)

The existence of the G phase in the Mn-Al and Cr-Mn-Al systems was first reported by Little, Raynor & Hume-Rothery (1946). Little & Hume-Rothery

(1948) made a further X-ray investigation of the G phase in the ternary system and proposed a formula $MnAl_{12}$. Their diffraction pattern fitted a primitive cubic cell with a = 13.25 kX.

Marchand (1947) also examined the G-phase alloys and found that his diffraction pattern could be indexed on the basis of a body-centred cubic structure with a = 7.47 kX. (7.48 Å). The large unit cell proposed by Little & Hume-Rothery was necessary in order to account for a number of weak reflexions occurring at fairly low angles.

In Table 2 some of the spacings measured by the authors are compared with those of Little & Hume-Rothery. Only the relevant low-angle values and three of the high-angle lines are reproduced.

Disregarding the questionable very weak lines, the main diffraction pattern of the G phase fits very well a body-centred cubic cell, as shown by a straight-line plot (graph not reproduced) of a values against the Nelson-Riley (1945) function. By extrapolation to $\theta = 90^{\circ}$ we found

$$a = 7.507 \text{ Å}$$
.

Assuming indices proposed by Little & Hume-Rothery, and plotting a values against the Nelson-Riley function, the scatter greatly exceeds the error of measurements.

Attempts were made to find a larger unit which would explain the very weak lines unaccounted for by the 7.507 Å cell. A cell a = 13.00 Å (i.e. $7.507 \times 1/3$), which is the nearest approach to the Little & Hume-Rothery value in agreement with the majority of the d values, must be ruled out because a set of impossible lines would have to be explained, namely N = 60, 156 and 252. Doubling the unit cell to a = 15.014 Å would account for some of the extra lines, although on the whole the fit is not very satisfactory; it is admitted, however, that the accuracy of measurements of the very very weak lines is not sufficient to warrant the rejection of the double cell.

There is little doubt, however, that lines (Table 2) 7 and 20 and a weak shoulder to line 13 (clearly resolved when chromium radiation is used) are due to a trace of aluminium present in the samples. Photographs taken with a stationary specimen show that these lines are 'spotty' while all the other lines are perfectly smooth. The question of the remaining very weak lines cannot be positively settled on the evidence presently available, but it is the opinion of the authors that they belong to an unidentified impurity.

It is noteworthy, however, that a good agreement was obtained between calculated and visually estimated intensities assuming the same type of structure and parameters as in WAl₁₂. This would indicate that the structure of the (Mn, Cr)Al₁₂ alloy is very similar to that of WAl₁₂ and MoAl₁₂. The calculated density of the G phase is 2.92 g.cm.⁻³.

Discussion

Fig. 1 illustrates the crystal structure of WAl_{12} , and interatomic distances are given in Table 3. Each tung-

Table	3.	Interatomic	distances	in	WAl ₁₂ ,	MoAl ₁₂	and
			(Mn, Cr)A	l ₁₂			

Atoms are numbered as in Fig. 1; M = W, Mo or (Mn, Cr).

	W A1 ₁₂	MOAI ₁₂	$(Mn, Cr)Al_{12}$
M-Al(1-12)	2·72 Å	2·72 Å	2·70 Å
$Al(1)-(2) \\ Al(1)-(9') $	2.79	2.79	2.77
Al(1)-(3) Al(1)-(6")	2.88	2.88	2.86

sten atom is surrounded by twelve aluminium atoms. Each aluminium atom has ten aluminium neighbours, five at 2.79 Å and five at 2.88 Å. There are interstices in the structure at $0, \frac{1}{2}, 0$, etc. and $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$, etc., being 6-fold and 8-fold respectively.

The average Al-Al distance is 2.84 Å in the WAl₁₂ and MoAl₁₂ alloys and 2.81 Å in the G phase.

Brillouin zones were examined for the WAl_{12} alloy. If one accepts a valency of 3 for aluminium, the electron-to-atom ratio in the alloys examined is not less than about 2.5 even if one accepted with Raynor (1944) a negative number as representing the valency of a transition element. The first important Brillouin zone bound by {310} planes was found to be too small to accommodate the required number of electrons. This zone must therefore be full and some overlap into the next zones must exist. Volumes of further zones were found to increase in small steps, and there is no apparent reason for selecting one in preference to the others.

The crystal structures of several compounds of aluminium with transition elements of the first long period (e.g. Robinson, 1952, 1953; Nicol, 1953) have been shown to give rise to prominent first Brillouin zones which are not completely full, assuming that the transition elements absorb electrons. In addition, distances were found between the transition metal and aluminium atoms which were noticeably shorter than one could expect from the co-ordination, and this effect was associated with the possibility of electron transfer.

The absence of a first prominent Brillouin zone which can contain rather more than the postulated number of electrons, and the lack of abnormally short interatomic distances, indicate that WAl_{12} , $MoAl_{12}$ and $(Mn, Cr)Al_{12}$ do not belong to the class of electron compounds and no conclusions regarding the effective valencies of transition metals can be drawn from this type of alloy.

The authors wish to thank Dr K. Little for the loan of samples of G phase and also for preparing some of the WAl₁₂ alloys, Mr J. Williams for preparing several of the WAl₁₂ and MoAl₁₂ alloys by powder methods, and Mr L. D. Muller for separation of the two phases of Al–W alloys in the Frantz separator.

We wish to thank Dr J. Thewlis and Dr P. C. L. Pfeil for stimulating discussions on the theory of alloys and for their interest in this work.

References

- ADAM, J. (1954). J. Sci. Instrum. 31, 131.
- BRINDLEY, G. W. (1945). Phil. Mag. (7), 36, 347.
- CLARK, W. D. (1940). J. Inst. Met. 66, 271.
- LEES, C. S. (1952). Provisional Patent Specification 24136/52.
- LITTLE, K. & HUME-ROTHERY, W. (1948). J. Inst. Met. 74, 521.
- LITTLE, K., RAYNOR, G. V. & HUME-ROTHERY, W. (1946). J. Inst. Met. 73, 83.
- MARCHAND, G. (1947). J. Inst. Met. 73, 747.
- NELSON, J. B. & RILEY, D. P. (1945). Proc. Phys. Soc. Lond. 57, 160.
- NICOL, A. D. I. (1953). Acta Cryst. 6, 285.
- RAYNOR, G. V. (1944). J. Inst. Met. 70, 531.
- ROBINSON, K. (1952). Acta Cryst. 5, 397.
- ROBINSON, K. (1953). Acta Cryst. 6, 854.
- TAYLOR, A. (1945). An Introduction to X-ray Metallography, p. 358. London: Chapman and Hall.
- WOLFF, P. M. DE (1951). Selected Topics in X-ray Crystallography, part F, chap. 2, p. 224. Amsterdam: North-Holland Publishing Company.